Torsion in coinvariants of certain Cantor minimal Z-systems

نویسنده

  • Hiroki Matui
چکیده

Let G be a finite abelian group. We will consider a skew product extension of a product of two Cantor minimal Z-systems associated with a G-valued cocycle. When G is non-cyclic and the cocycle is non-degenerate, it will be shown that the skew product system has torsion in its coinvariants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bratteli Diagram for Commuting Homeomorphisms of the Cantor Set

This paper presents a construction of a sequence of Kakutani-Rohlin Towers and a corresponding simple Bratteli Diagram, B, for a general minimal aperiodic Z d action on a Cantor Set, X, with d 2. This is applied to the description of the orbit structure and to the calculation of the ordered group of coinvariants. For each minimal continuous Z d action on X there is a minimal continuous Z action...

متن کامل

Extensions of Cantor Minimal Systems and Dimension Groups

Given a factor map p : (X, T )→ (Y, S) of Cantor minimal systems, we study the relations between the dimension groups of the two systems. First, we interpret the torsion subgroup of the quotient of the dimension groups K0(X)/K0(Y ) in terms of intermediate extensions which are extensions of (Y, S) by a compact abelian group. Then we show that, by contrast, the existence of an intermediate non-a...

متن کامل

N ov 2 00 7 Orbit equivalence for Cantor minimal Z 2 - systems

We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.

متن کامل

Se p 20 06 Orbit equivalence for Cantor minimal Z 2 - systems

We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.

متن کامل

Orbit equivalence for Cantor minimal Z 2 - systems

We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007